The Ustilago maydis AA10 LPMO is active on fungal cell wall chitin - CIRI - BioInformatique et BioStatistiques Access content directly
Journal Articles Applied and Environmental Microbiology Year : 2023

The Ustilago maydis AA10 LPMO is active on fungal cell wall chitin

Mireille Haon
Bastien Bissaro
Jean-Guy Berrin

Abstract

Lytic polysaccharide monooxygenases (LPMOs) can perform oxidative cleavage of glycosidic bonds in carbohydrate polymers (e.g., cellulose, chitin), making them more accessible to hydrolytic enzymes. While most studies have so far mainly explored the role of LPMOs in a (plant) biomass conversion context, alternative roles and paradigms begin to emerge. The AA10 LPMOs are active on chitin and/or cellulose and mostly found in bacteria and in some viruses and archaea. Interestingly, AA10-encoding genes are also encountered in some pathogenic fungi of the Ustilaginomycetes class, such as Ustilago maydis , responsible for corn smut disease. Transcriptomic studies have shown the overexpression of the AA10 gene during the infectious cycle of U. maydis . In fact, U. maydis has a unique AA10 gene that codes for a catalytic domain appended with a C-terminal disordered region. To date, there is no public report on fungal AA10 LPMOs. In this study, we successfully produced the catalytic domain of this LPMO ( Um AA10_cd) in Pichia pastoris and carried out its biochemical characterization. Our results show that Um AA10_cd oxidatively cleaves α- and β-chitin with C1 regioselectivity and boosts chitin hydrolysis by a GH18 chitinase from U. maydis ( Um GH18A). Using a biologically relevant substrate, we show that Um AA10_cd exhibits enzymatic activity on U. maydis fungal cell wall chitin and promotes its hydrolysis by Um GH18A. These results represent an important step toward the understanding of the role of LPMOs in the fungal cell wall remodeling process during the fungal life cycle. IMPORTANCE Lytic polysaccharide monooxygenases (LPMOs) have been mainly studied in a biotechnological context for the efficient degradation of recalcitrant polysaccharides. Only recently, alternative roles and paradigms begin to emerge. In this study, we provide evidence that the AA10 LPMO from the phytopathogen Ustilago maydis is active against fungal cell wall chitin. Given that chitin-active LPMOs are commonly found in microbes, it is important to consider fungal cell wall as a potential target for this enigmatic class of enzymes.
Fichier principal
Vignette du fichier
ustilago.pdf (4.14 Mo) Télécharger le fichier
ustilago-SM.pdf (1.12 Mo) Télécharger le fichier
Origin : Publication funded by an institution
licence : CC BY - Attribution
licence : CC BY - Attribution

Dates and versions

hal-04224439 , version 1 (27-11-2023)

Licence

Attribution

Identifiers

Cite

Roseline Assiah Yao, Jean-Lou Reyre, Ketty Tamburrini, Mireille Haon, Olivier Tranquet, et al.. The Ustilago maydis AA10 LPMO is active on fungal cell wall chitin. Applied and Environmental Microbiology, 2023, 89 (10), ⟨10.1128/aem.00573-23⟩. ⟨hal-04224439⟩
87 View
16 Download

Altmetric

Share

Gmail Facebook X LinkedIn More